Abstract

The propagating speed of waves depends on the physical properties of the transmitting material. Since these properties can vary along the propagation path, they cannot be determined from local measurements. However, mean values of the propagation speed can be obtained from time measurements, either between distributed sources and sensors (Time Of Arrival, TOA) if both are synchronized or otherwise from time differences between distributed sensors (Time Difference Of Arrivals, TDOA). This contribution investigates the required assumptions for speed estimation from time measurements and provides closed-form solutions for the synchronized and unsynchronized case. Furthermore the achievable accuracy is determined in terms of Cramer-Rao bounds. The analysis is carried out for the propagation of sound waves in air, where the propagation speed varies with the air temperature. Example results from loudspeaker-microphone recordings are provided. However the closed-form relations apply also to the propagation of other types of waves in linear regimes. This manuscript extends previous work by the authors by providing closed-form solutions and by a parallel treatment of the TOA and the TDOA measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.