Abstract

The buckling mode is important to determine the critical load of specially orthotropic rectangular plates under axial compression with simply supported boundary. However, in classical laminated plate theory (CLPT), the critical buckling mode can only be obtained by iterative or numerical methods. This paper derives the critical buckling mode mathematically and presents the critical buckling load in closed form. By taking advantage of the derived closed-form solution, it is convenient to investigate the effects of aspect ratio, load ratio, and fiber orientation on the buckling load, and the parameters affecting the buckling mode can be easily obtained. The first-order shear deformation theory (FSDT)-based finite element method is developed to verify the closed-form solution. The bending-torsional coupling effects are analyzed and discussed to assess the approximation of the buckling behavior of specially orthotropic plates to general laminates. The obtained finite element solutions of general laminates are compared with the closed-form solutions of specially orthotropic plates. The accuracy of approximation of the buckling behavior of specially orthotropic plates to the general laminates increases as the bending-torsional coupling coefficients decrease. The closed-form solution can be applied to laminates with small bending-torsional coupling coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.