Abstract
We consider a single-item continuous-review (r, q) inventory system with a renewal demand process and independent, identically distributed stochastic lead times. Using a stationary marked-point process technique and a heavy-traffic limit, we prove a previous conjecture that inventory position and inventory on-order are asymptotically independent. We also establish closed-form expressions for the optimal policy parameters and system cost in heavy-traffic limit, the first of their kind, to our knowledge. These expressions sharpen our understanding of the key determinants of the optimal policy and their quantitative and qualitative impacts. For example, the results demonstrate that the well-known square-root relationship between the optimal order quantity and demand rate under a sequential processing environment is replaced by the cube root under a stochastic parallel processing environment. We further extend the study to periodic-review (S, T) systems with constant lead times. The electronic companion is available at https://doi.org/10.1287/opre.2017.1623 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.