Abstract

AbstractWe demonstrate the application of closed bipolar electrochemistry for the asymmetrical deposition of metals and metal oxides on bipolar electrodes of decreasing dimensions, down to the nanoscale. We focus on the asymmetrical deposition of semiconducting oxides (TiO2, Cu2O, or Co2O3) and Pt on glassy carbon disks, carbon microwires, and gold nanowires. The optimization of the process is studied by using a four‐electrode voltammetric cell. Scanning electron microscopies and energy‐dispersive X‐ray spectroscopy confirm the achievement of the desired deposition. Electron backscatter diffraction identifies cuprite in all of the Cu2O deposits. Closed bipolar electrochemistry allows the bipolar functionalization of carbon materials and gold nanowires by using electrolytes that are unsuitable for open bipolar electrochemistry, applying a potential difference as low as 1 V. For the first time, Janus like nanosized objects are obtained by closed bipolar electrochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.