Abstract

The geocaulosphere is home to microbes that establish communication between themselves and others that disrupt them. These cell-to-cell communication systems are based on the synthesis and perception of signaling molecules, of which the best known belong to the N-acyl-homoserine lactone (AHL) family. Among indigenous bacteria, certain Gram-positive actinobacteria can sense AHLs produced by soft-rot Gram-negative phytopathogens and can degrade the quorum-sensing AHL signals to impair the expression of virulence factors. We mimicked this interaction by introducing dual-color reporter strains suitable for monitoring both the location of the cells and their quorum-sensing and -quenching activities, in potato tubers. The exchange of AHL signals within the pathogen's cell quorum was clearly detected by the presence of bright green fluorescence instead of blue in a portion of Pectobacterium-tagged cells. This phenomenon in Rhodococcus cells was accompanied by a change from red fluorescence to orange, showing that the disappearance of signaling molecules is due to rhodococcal AHL degradation rather than the inhibition of AHL production. Rhodococci are victorious in this fight for the control of AHL-based communication, as their jamming activity is powerful enough to prevent the onset of disease symptoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.