Abstract

The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.