Abstract

Antibiotic-resistance of hospital-acquired infections is a major public health issue. The worldwide emergence and diffusion of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, including Escherichia coli (ESBL-EC) and Klebsiella pneumoniae (ESBL-KP), is of particular concern. Preventing their nosocomial spread requires understanding their transmission. Using Close Proximity Interactions (CPIs), measured by wearable sensors, and weekly ESBL-EC–and ESBL-KP–carriage data, we traced their possible transmission paths among 329 patients in a 200-bed long-term care facility over 4 months. Based on phenotypically defined resistance profiles to 12 antibiotics only, new bacterial acquisitions were tracked. Extending a previously proposed statistical method, the CPI network’s ability to support observed incident-colonization episodes of ESBL-EC and ESBL-KP was tested. Finally, mathematical modeling based on our findings assessed the effect of several infection-control measures. A potential infector was identified in the CPI network for 80% (16/20) of ESBL-KP acquisition episodes. The lengths of CPI paths between ESBL-KP incident cases and their potential infectors were shorter than predicted by chance (P = 0.02), indicating that CPI-network relationships were consistent with dissemination. Potential ESBL-EC infectors were identified for 54% (19/35) of the acquisitions, with longer-than-expected lengths of CPI paths. These contrasting results yielded differing impacts of infection control scenarios, with contact reduction interventions proving less effective for ESBL-EC than for ESBL-KP. These results highlight the widely variable transmission patterns among ESBL-producing Enterobacteriaceae species. CPI networks supported ESBL-KP, but not ESBL-EC spread. These outcomes could help design more specific surveillance and control strategies to prevent in-hospital Enterobacteriaceae dissemination.

Highlights

  • Multidrug resistant (MDR)-Enterobacteriaceae are a common cause of healthcare-associated and community-acquired infections in humans [1], due to the increase over recent years of third-generation cephalosporin, fluoroquinolone and carbapenem resistances [2,3], leading to difficulties finding appropriate treatment and increased mortality and morbidity

  • Tracing extended-spectrum β-lactamase (ESBL) dissemination in hospitals is an important step in the fight against the spread of multi-drug resistant bacteria

  • Based on the analysis of these longitudinal data, this study shows that ESBL-producing Klebsiella pneumoniae (ESBL-KP) mostly spreads during close-proximity interactions between individuals, while this is not the case for ESBL-producing Escherichia coli (ESBL-EC), suggesting that ESBL-KP but not ESBL-EC may be controlled by contact reduction interventions

Read more

Summary

Introduction

Multidrug resistant (MDR)-Enterobacteriaceae are a common cause of healthcare-associated and community-acquired infections in humans [1], due to the increase over recent years of third-generation cephalosporin, fluoroquinolone and carbapenem resistances [2,3], leading to difficulties finding appropriate treatment and increased mortality and morbidity. According to a recent World Health Organization (WHO) assessment, one of the greatest threats to human health is posed by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) and ESBL-producing Klebsiella pneumoniae (ESBL-KP), which are listed among the priority 1 pathogens for research and development of new antibiotics [5]. These bacteria mostly cause bloodstream, urinary tract and respiratory infections [3]. To control the threat of these bacteria in hospital settings, more insight is needed regarding their transmission routes [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call