Abstract

Assemblies with C1 symmetry exhibit important applications in many fields such as enantioselective catalysis. However, their formation is challenging due to their large entropic disadvantage, and molecular information on their formation dynamics is limited because of the lack of effective characterization techniques. Here, using achiral amphiphilic molecules such as N-oleoyl ethanolamide (OEA) and its analogues as modeling assembly units, we demonstrated that the sss polarization signals, generated by femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), provide a powerful tool to monitor the formation dynamics of the C1 symmetric supramolecular structures at the interfaces. The trans conformation of the assembly units can provide strong π-π interactions and thus produce enough enthalpy to drive the formation of C1 symmetric supramolecular structures. However, the cis conformation impedes the assembly of C1 symmetric structures and cannot generate sss and chiral polarization SFG signals. These findings may aid in rationally constructing ordered and functional superstructures and understanding the mechanism of chirality formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.