Abstract

Water molecules in any of the ice polymorphs organize themselves into a perfect four-coordinated hydrogen-bond network at the expense of dense packing. Even at high pressures, there seems to be no way to reconcile the ice rules with the close packing. Here, we report several close-packed ice phases in carbon nanotubes obtained from molecular dynamics simulations of two different water models. Typically they are in plastic states at high temperatures and are transformed into the hydrogen-ordered ice, keeping their close-packed structures at lower temperatures. The close-packed structures of water molecules in carbon nanotubes are identified with those of spheres in a cylinder. We present design principles of hydrogen-ordered, close-packed structures of ice in nanotubes, which suggest many possible dense ice forms with or without nonzero polarization. In fact, some of the simulated ices are found to exhibit ferroelectric ordering upon cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.