Abstract

Recent studies have demonstrated that a large fraction of human gamma delta PBL recognize Ag of prokaryotic and eukaryotic origins, respectively found in hydrosoluble mycobacterial extracts and on the Daudi Burkitt's lymphoma cells. The structural basis of the recognition of these Ag have been presently studied in detail, through analysis of a large panel of thymus- and peripheral blood-derived gamma delta T-cell clones. Our results suggest that Daudi and mycobacteria-reactive gamma delta subsets are strictly overlapping and hence that gamma delta T-cell responses against these two Ag are closely related. Daudi cells and mycobacteria were recognized by V gamma 9+V delta 2+, but not by V gamma 9+V delta 2-, V gamma 9-V delta 2+, or V gamma 9-V delta 2- PBL clones. However, not all V gamma 9+V delta 2+ clones were reactive and, in particular: 1) the proportion of Ag-reactive lymphocytes was much lower among thymus- than PBL-derived clones (respectively 24/36 vs 72/73); 2) none of the V gamma 9+V delta 2+ clones expressing a V9J2C2 gamma chain (n = 4) were reactive to Daudi or mycobacteria, indicating that expression of a disulfide-linked TCR is probably a prerequisite for recognition of these Ag; and 3) among V gamma 9+V delta 2+ clones bearing disulfide-linked TCR, almost all (50/53) clones expressing a V9JPC1 gamma chain were reactive, whereas a large fraction (6/10) of those expressing a V9J1C1 gamma chain were weakly or nonreactive. Together, these observations suggest that germline residues specific to V gamma 9, V delta 2, and J gamma P elements directly contribute to recognition of Daudi and mycobacterial Ag. Furthermore, these findings may provide an explanation for coordinate use of these gene elements by a large fraction of gamma delta PBL, through peripheral selection events mediated by ligands identical or structurally related to the above Ag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.