Abstract

Mycotoxins can impart different types of combined toxicity to humans and animals, therefore, it is critical to understand the underlying mechanisms to eliminate the harm. Herein a combination of zearalenone (ZEA) at 2 μM and deoxynivalenol (DON) at 0.1 μM decreased cell viability and increased ROS level in HepG2 cells, suggesting synergistic toxicity exerted by ZEA and DON even at their low toxic concentrations. Moreover, apoptosis and inflammatory response were promoted after the co-exposure of ZEA and DON, indicated by the increased expression of BAX, Caspase-3, IL-1β and IL-6 genes. Such synergistic toxicity was closely associated with miR-221-mediated PTEN/PI3K/AKT signal pathway, with a negative regulatory relationship between PTEN and PI3K/AKT signaling. MiR-221 could influence cell viability and ROS level to counter the combined toxicity of ZEA and DON through targeting directly PTEN gene. This study demonstrated the toxicological impact of mycotoxin interactions on cells, and critical role of the interplay between miRNAs and PTEN in monitoring the synergistic toxicity of mycotoxin mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.