Abstract

There are many applications of the close approach maneuvers in astronautics, and several missions used this technique in the last decades. In the present work, those close approach maneuvers are revisited, but now considering that the spacecraft passes around an oblate planet. This fact changes the distribution of mass of the planet, increasing the mass in the region of the equator, so increasing the gravitational forces in the equatorial plane. Since the present study is limited to planar trajectories, there is an increase in the variation of energy given by the maneuver. The planet Jupiter is used as the body for the close approach, but the value of J2 is varied in a large range to simulate situations of other celestial bodies that have larger oblateness, but the same mass ratio. This is particularly true in recent discovered exoplanets, and this first study can help the study of the dynamics around those bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call