Abstract

An outstanding problem of interdisciplinary interest is to understand quantitatively the role of social contacts in contagion dynamics. In general, there are two types of contacts: close ones among friends, colleagues and family members, etc., and ordinary contacts from encounters with strangers. Typically, social reinforcement occurs for close contacts. Taking into account both types of contacts, we develop a contact-based model for social contagion. We find that, associated with the spreading dynamics, for random networks there is coexistence of continuous and discontinuous phase transitions, but for heterogeneous networks the transition is continuous. We also find that ordinary contacts play a crucial role in promoting large-scale spreading, and the number of close contacts determines not only the nature of the phase transitions but also the value of the outbreak threshold in random networks. For heterogeneous networks from the real world, the abundance of close contacts affects the epidemic threshold, while its role in facilitating the spreading depends on the adoption threshold assigned to it. We uncover two striking phenomena. First, a strong interplay between ordinary and close contacts is necessary for generating prevalent spreading. In fact, only when there are propagation paths of reasonable length which involve both close and ordinary contacts are large-scale outbreaks of social contagions possible. Second, abundant close contacts in heterogeneous networks promote both outbreak and spreading of the contagion through the transmission channels among the hubs, when both values of the threshold and transmission rate among ordinary contacts are small. We develop a theoretical framework to obtain an analytic understanding of the main findings on random networks, with support from extensive numerical computations. Overall, ordinary contacts facilitate spreading over the entire network, while close contacts determine the way by which outbreaks occur, i.e., through a second- or first-order phase transition. These results provide quantitative insights into how certain social behaviors can emerge and become prevalent, which has potential implications not only to social science but also to economics and political science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.