Abstract
Clopidogrel is an effective purinergic 2Y12 receptor (P2Y12) antagonist used to prevent arterial thrombosis, but its use is associated with adverse bleeding. Clinical studies have demonstrated that clopidogrel users have an increased risk of cerebral microbleeds and intracerebral hemorrhage. Our previous studies suggest that non-platelet mechanisms mediate these adverse bleeding events; we hypothesize that clopidogrel or one of its metabolites interacts with blood vessels directly to cause bleeding. New Zealand white rabbits (1.9–2.7 kg) were treated orally with vehicle or clopidogrel (3 or 10 mg/kg) for three days. On the fourth day, the rabbits were anesthetized for blood collection and then euthanized. The brain was collected, and the middle cerebral arteries were isolated. We used light transmission aggregometry and pressure myography to elucidate the mechanisms of the off-target effects associated with clopidogrel treatment. We confirmed that inhibition of P2Y12 activation by clopidogrel inhibited ADP-induced platelet aggregation but had no impact on P2Y12-independent arachidonic acid- or collagen-induced platelet aggregation. Analysis of middle cerebral arteries from clopidogrel treated rabbits showed that clopidogrel did not affect P2Y4, P2Y6, and P2Y14 receptor-mediated contraction but attenuated the contractile response after P2Y2 receptor activation. Further analysis determined P2Y2-mediated constriction was endothelium-dependent. Vasoconstriction is a primary component of hemostasis, and impaired vasoconstriction can prolong bleeding. These results suggest clopidogrel inhibits the endothelial P2Y2 receptor in the middle cerebral artery, which provides a mechanistic explanation for the adverse cerebral bleeding associated with the drug.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: European journal of pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.