Abstract

BackgroundClonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme.MethodsWe isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm’s reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated.ResultsThe full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8–44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing.ConclusionsCsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1622-2) contains supplementary material, which is available to authorized users.

Highlights

  • Clonorchis sinensis causes a major food-borne helminthic infection

  • We designated these cDNAs as C. sinensis omega-class GST1 (CsGSTo1) and 2 (CsGSTo2) and registered them in GenBank under accession numbers KX163088 and KX163089

  • When we simulated the tertiary structure of these proteins, a cysteine residue that constituted the omega-class specific active site (C30/C36) and glutathione binding amino acids were recognized in appropriate positions (K57/K63, V70/V76, E83/E88 and S84/S89 for Clonorchis sinensis omega-class GST1 (CsGSTo1) and 2, respectively)

Read more

Summary

Introduction

Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Clonorchis sinensis causes one of the major fish-bornezoonotic trematodiases. It is prevalent in several countries of Asia, especially where aquaculture systems associated with paddy field are widely used [1]. Epidemiological evidence indicates that approximately 10 % of cholangiocarcinoma is associated with chronic C. sinensis infections [5, 6]. Long-standing inflammations accompanied by clonorchiasis might result in oxidative damage of the biliary ductal epithelium and malignant transformation. C. sinensis is classified as a Group 1 biocarcinogen [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call