Abstract
Follistatin, a secreted glycoprotein, has been shown to act as a potent neural inducer during early amphibian development. The function of this protein during embryogenesis in higher vertebrates is unclear, and to further our understanding of its role we have cloned, sequenced, and performed an in-depth expressional analysis of the chick homologue of follistatin. In addition we also describe the expression pattern of activin beta A and activin beta B, proteins that have previously been shown to be able to interact with follistatin. In this study we show that the expression of follistatin and the activins do not always overlap. Follistatin was first detected in Hensen's node and subsequently in the region described by Spratt [1952] as the neuralising area. In older embryos it was also expressed in a highly dynamic manner in the hindbrain as well as in the somites. We also present evidence that follistatin may have a later role in the resegmentation of the somites. We were unable to detect the expression of activin beta A during early embryogenesis, whereas activin beta B was first expressed in the extending primitive streak and subsequently in the neural folds. The results from this study are consistent with a role for follistatin in neural induction but suggest it has additional functions unrelated to its inhibitory actions on activins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.