Abstract
Glutaredoxin 2 (Grx2) from Escherichia coli catalyzes GSH-disulfide oxidoreductions via two redox-active cysteine residues, but in contrast to glutaredoxin 1 (Grx1) and glutaredoxin 3 (Grx3), is not a hydrogen donor for ribonucleotide reductase. To characterize Grx2, a chromosomal fragment containing the E. coli Grx2 gene (grxB) was cloned and sequenced. grxB (645 base pairs) is located between the rimJ and pyrC genes while an open reading frame immediately upstream grxB encodes a novel transmembrane protein of 402 amino acids potentially belonging to class II of substrate export transporters. The deduced amino acid sequence for Grx2 comprises 215 residues with a molecular mass of 24.3 kDa. There is almost no similarity between the amino acid sequence of Grx2 and Grx1 or Grx3 (both 9-kDa proteins) with the exception of the active site which is identical in all three glutaredoxins (C9PYC12 for Grx2). Only limited similarities were noted to glutathione S-transferases (Grx2 amino acids 16-72), and protein disulfide isomerases from different organisms (Grx2 amino acids 70-180). Grx2 was overexpressed and purified to homogeneity and its activity was compared with those of Grx1 and Grx3 using GSH, NADPH, and glutathione reductase in the reduction of 0.7 mM beta-hydroxyethyl disulfide. The three glutaredoxins had similar apparent Km values for GSH (2-3 mM) but Grx2 had the highest apparent kcat (554 s-1). Expression of two truncated forms of Grx2 (1-114 and 1-133) which have predicted secondary structures similar to Grx1 (betaalphabetaalphabetabetaalpha) gave rise to inclusion bodies. The mutant proteins were resolubilized and purified but lacked GSH-disulfide oxidoreductase activity. The latter should therefore require the participation of amino acid residues from the COOH-terminal half of the molecule and is probably not confined to a Grx1-like NH2-terminal subdomain. Grx2 being radically different from the presently known glutaredoxins in terms of molecular weight, amino acid sequence, catalytic activity, and lack of a consensus GSH-binding site is the first member of a novel class of glutaredoxins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.