Abstract
Recently, large-scale synthetic datasets are shown to be very useful for generalizable person re-identification. However, synthesized persons in existing datasets are mostly cartoon-like and in random dress collocation, which limits their performance. To address this, in this work, an automatic approach is proposed to directly clone the whole outfits from real-world person images to virtual 3D characters, such that any virtual person thus created will appear very similar to its real-world counterpart. Specifically, based on UV texture mapping, two cloning methods are designed, namely registered clothes mapping and homogeneous cloth expansion. Given clothes keypoints detected on person images and labeled on regular UV maps with clear clothes structures, registered mapping applies perspective homography to warp real-world clothes to the counterparts on the UV map. As for invisible clothes parts and irregular UV maps, homogeneous expansion segments a homogeneous area on clothes as a realistic cloth pattern or cell, and expand the cell to fill the UV map. Furthermore, a similarity-diversity expansion strategy is proposed, by clustering person images, sampling images per cluster, and cloning outfits for 3D character generation. This way, virtual persons can be scaled up densely in visual similarity to challenge model learning, and diversely in population to enrich sample distribution. Finally, by rendering the cloned characters in Unity3D scenes, a more realistic virtual dataset called ClonedPerson is created, with 5,621 identities and 887,766 images. Experimental results show that the model trained on ClonedPerson has a better generalization performance, superior to that trained on other popular real-world and synthetic person re-identification datasets. The ClonedPerson project is available at https://github.com/Yanan-Wang-cs/ClonedPerson.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.