Abstract

Thioredoxins h are ubiquitous proteins reduced by NADPH- thioredoxin reductase (NTR). They are able to reduce disulphides in target proteins. In monocots, thioredoxins h accumulate at high level in seeds and show a predominant localization in the nucleus of seed cells. These results suggest that the NTR-thioredoxin h system probably plays an important role in seed physiology. To date, the study of this system in monocots is limited by the lack of information about NTR. In the present study, we describe the cloning of a full-length cDNA encoding NTR from wheat ( Triticum aestivum ). The polypeptide deduced from this cDNA shows close similarity to NTRs from Arabidopsis, contains FAD- and NADPH-binding domains and a disulphide probably interacting with the disulphide at the active site of thioredoxin h. Wheat NTR was expressed in Escherichia coli as a His-tagged protein. The absorption spectrum of the purified recombinant protein is typical of flavoenzymes. Furthermore, it showed NADPH-dependent thioredoxin h reduction activity, thus confirming that the cDNA clone reported in the present study encodes wheat NTR. Using the His-tagged NTR and TRXhA (wheat thioredoxin h ), we successfully reconstituted the wheat NTR-thioredoxin h system in vitro, as shown by the insulin reduction assay. A polyclonal antibody was raised against wheat NTR after immunization of rabbits with the purified His-tagged protein. This antibody efficiently detected a single polypeptide of the corresponding molecular mass in seed extracts and it allowed the analysis of the pattern of accumulation of NTR in different wheat organs and developmental stages. NTR shows a wide distribution in wheat, but, surprisingly, its accumulation in seeds is low, in contrast with the level of thioredoxins h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call