Abstract

pSAM2 is a conjugative Streptomyces ambofaciens mobile genetic element that can transfer and integrate site specifically in the genome. The chromosomal attachment site (attB) for pSAM2 site-specific recombination for two Frankia species was analyzed. It overlaps putative proline tRNA genes having a 3'-terminal CCA sequence, an uncommon feature among actinomycetes. pSAM2 is able to integrate into a cloned Frankia attB site harbored in Streptomyces lividans. The integration event removes the 3'-terminal CCA sequence and introduces a single nucleotide difference in the T psi C loop of the putative Frankia tRNA(Pro) gene. Major differences between the attP sequence from pSAM2 and the Frankia attB sequence restrict the identity segment to a 43-bp-long region. Only one mismatch is found between these well-conserved att segments. This nucleotide substitution makes a BstBI recognition site in Frankia attB and was used to localize the recombination site in a 25-bp region going from the anticodon to the T psi C loop of the tRNA(Pro) sequence. Integration of pSAM2 into the Frankia attB site is the first step toward introduction of pSAM2 derivatives into Frankia spp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.