Abstract
A system for molecular cloning in Streptococcus pneumoniae was developed. The multicopy plasmids pMV158 (5.4 kilobases) and pLS1 (4.3 kilobases), which confer tetracycline resistance, were used as vectors to clone chromosomal genes of S. pneumoniae in host cells of this species. A 3.3-kilobase restriction fragment containing the malM gene, which codes for amylomaltase, was cloned in a deletion mutant lacking chromosomal homology with the fragment. The recombinant plasmid pLS70, could transform over 50% of a recipient population to maltose utilization. Amylomaltase constituted up to 10% of the protein of cells containing pLS70. A derivative with a deletion, pLS69, appeared to gain a selective advantage by producing less enzyme. A 10-kilobase restriction fragment containing the sul-d gene for sulfonamide resistance was cloned in the presence of the homologous chromosomal gene. De novo establishment of a recombinant plasmid was just as frequent as transformation in an endogenous plasmid. Despite the processing of DNA during uptake in the transformation of S. pneumoniae, recombinant plasmids can be introduced. Models for the reconstruction of recombinant DNA in cells of S. pneumoniae and Bacillus subtilis are considered and compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.