Abstract

To better understand the molecular mechanisms of diapause initiation, we used the sensitive cDNA subtraction (selective amplification via biotin- and restriction-mediated enrichment) method and isolated a novel gene expressed abundantly in diapause eggs of the silkworm, Bombyx mori, which encodes a homolog of the human oxidation resistance 1 (OXR1) protein. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses confirmed that BmOXR1 mRNA and its 140-kDa protein were differentially expressed in diapause eggs compared to non-diapause eggs. OXR1 double-stranded RNA (dsRNA) was injected into diapause-destined eggs before the cellular blastoderm stage, and 4days later, when untreated eggs reached the diapause stage, the OXR1 protein disappeared; however, these eggs remained in diapause, suggesting that BmOXR1 is not essential for diapause initiation and/or maintenance. To further investigate the in vivo function of BmOXR1 apart from its role in diapause, we overexpressed BmOXR1 in Drosophila melanogaster. The fruit fly male adult life-span was significantly extended in the 50%-survival time when adults were reared on diets both with and without H2O2 solution under 25°C incubation. These results suggest that BmOXR1 functions in D. melanogaster via a possible antioxidant effect. As BmOXR1 was expressed mainly in the nuclei of D. melanogaster cells, the mechanism underlying its antioxidation effect appears to be different from that in humans where it is expressed mainly in the mitochondria. Taken together, these results suggest that BmOXR1 might serve as an antioxidant regulator during the early diapause stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.