Abstract

Topramezone is a new 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide that is widely used on corn to control annual grass weeds and broadleaf weeds. Due to its broad-spectrum weed control capacity, improved activity, excellent crop selectivity, low mammalian toxicity and high environmental safety, topramezone is considered an ideal target herbicide for transgenic engineering of herbicide tolerance. In this study, a topramezone-resistant strain, Burkholderia sp. BW-1, was screened from soil, and a novel topramezone-resistant HPPD gene (Bkhppd) was cloned from this strain. Purified BkHPPD displayed relatively high HPPD activity and topramezone resistance with a half-maximal inhibitory concentration (IC50) of 572.0 nM. Two BkHPPD mutants designated as BkHPPDt31 and BkHPPDt76 were screened through pressure acclimation. BkHPPDt31 contained three amino acid substitutions (H65D, N160 T and N258S), whereas BkHPPDt76 contained four amino acid substitutions (H65D, N160 T, N258S and N343 T). The topramezone IC50 values of BkHPPDt31 and BkHPPDt76 were 1.1- and 2.3-fold higher, respectively, than that of wild-type BkHPPD. In addition, site-directed mutagenesis indicated that the increased resistance conferred by BkHPPDt31 resulted from the synergistic effects of the three site mutations rather than a single site mutation, and that substitution of asparagine 343 with threonine significantly decreased catalytic efficiency and affinity but increased topramezone resistance. In summary, this study provides a novel topramezone-resistant HPPD gene for the engineering of genetically modified herbicide-resistant crops and facilitates further elucidation of the resistance mechanism of BkHPPD and improvement of resistance through directed evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call