Abstract

A signature feature of tetrapod pro-opiomelanocortin (POMC) is the presence of three melantropin (MSH) coding regions (α-MSH, β-MSH, γ-MSH). The MSH duplication events occurred early during the radiation of the jawed vertebrates well over 400 million years ago. However, in at least one order of modern bony fish (subdivision Teleostei; order Salmoniformes; i.e. salmon and trout) the γ-MSH sequence has been deleted from POMC. To determine whether the γ-MSH deletion has occurred in other teleost orders, a POMC cDNA was cloned from the pituitary of the neoteleost Oreochromis mossambicus (order Perciformes). In O. mossambicus POMC, the deletion is more extensive and includes the γ-MSH sequence and most of the joining peptide region. Because the salmoniform and perciform teleosts do not share a direct common ancestor, the γ-MSH deletion event must have occurred early in the evolution of the neoteleost fishes. The post-translational processing of O. mossambicus POMC occurs despite the fact that the proteolytic recognition sequence, (R/K)-X n-(R/K) where n can be 0, 2, 4, or 6, a common feature in mammalian neuropeptide and polypeptide hormone precursors, is not present at several cleavage sites in O. mossambicus POMC. These observations would indicate that either the prohormone convertases in teleost fish use distinct recognition sequences or vertebrate prohormone convertases are capable of recognizing a greater number of primary sequence motifs around proteolytic cleavage sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.