Abstract

In most mammalian cells nucleoside uptake occurs primarily via broad-specificity, es (e, equilibrative; 5, sensitive to NBMPR inhibition) transporters that are potently inhibited by nitrobenzylthioinosine (NBMPR). These transporters are essential for nucleotide synthesis by salvage pathways in hemopoietic and other cells that lack de novo pathways and are the route of cellular uptake for many cytotoxic nucleosides used in cancer and viral chemotherapy. They play an important role in adenosine-mediated regulation of many physiological processes, including neurotransmission and platelet aggregation, and are a target for coronary vasodilator drugs. We have previously reported the purification of the prototypic es transporter from human erythrocytes and have shown that this glycoprotein of apparent M, 55,000 is immunologically related to nucleoside transporters from several other species and tissues, including human placenta. Here we report the isolation of a human placental cDNA encoding a 456-residue glycoprotein with functional characteristics typical of an es-type transporter. It is predicted to possess 11 membrane-spanning regions and is homologous to several proteins of unknown function in yeast, nematodes, plants and mammals. Because of its central role in the uptake both of adenosine and of chemotherapeutic nucleosides, study of this protein should not only provide insights into the physiological roles of nucleoside transport but also open the way to improved therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.