Abstract
Retinoic acid, a hormone biosynthesized from retinol, controls numerous biological systems by regulating eukaryotic gene expression from conception through death. This work reports the cloning and expression of a liver cDNA encoding a microsomal retinol dehydrogenase (RoDH), which catalyzes the primary and rate-limiting step in retinoic acid synthesis. The predicted amino acid sequence and biochemical data obtained from the recombinant enzyme verify it as a short-chain alcohol dehydrogenase. Like microsomal RoDH, the recombinant enzyme recognized as substrate retinol bound to cellular retinol-binding protein, had higher activity with NADP rather than NAD, was stimulated by ethanol or phosphatidylcholine, was not inhibited by 4-methylpyrazole, was inhibited by phenylarsine oxide and carbenoxolone and localized to microsomes. RoDH recognized the physiological form of retinol, holocellular retinol-binding protein, with a Km of 0.9 microM, a value lower than the approximately 5 microM concentration of holocellular retinol binding protein in liver. Northern and Western blot analyses revealed RoDH expression only in rat liver, despite enzymatic activity in liver, brain, kidney, lung, and testes. These data suggest that tissue-specific isozyme(s) of short chain alcohol dehydrogenases catalyze the first step in retinoic acid biogenesis and further strengthen the evidence that the "cassette" of retinol bound to cellular retinol-binding protein serves as a physiological substrate.
Highlights
From the Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214
A hormone biosynthesized from retinol, controls numerous biological systems by regulating eukaryotic gene expression from conception through death
Like microsomal retinol dehydrogenase (RoDH), the recombinant enzyme recognized as substrate retinol bound to cellular retinol-binding protein, had higher activity with NADP rather than NAD, was stimulated by ethanol or phosphatidylcholine, was not inhibited by 4-methylpyrazole, was inhibited by phenylarsine oxide and carbenoxolone and localized to microsomes
Summary
(Received for publication, October 28, 1994, and in revised form, December 9, 1994). From the Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214. This work reports the cloning and expression of a liver eDNA encoding a microsomal retinol dehydrogenase (RoDH), which catalyzes the primary and rate-limiting step in retinoic acid synthesis. Like microsomal RoDH, the recombinant enzyme recognized as substrate retinol bound to cellular retinol-binding protein, had higher activity with NADP rather than NAD, was stimulated by ethanol or phosphatidylcholine, was not inhibited by 4-methylpyrazole, was inhibited by phenylarsine oxide and carbenoxolone and localized to microsomes. Northern and Western blot analyses revealed RoDH expression only in rat liver, despite enzymatic activity in liver, brain, kidney, lung, and testes These data suggest that tissue-specific isozyme(s) of short chain alcohol dehydrogenases catalyze the first step in retinoic acid biogenesis and further strengthen the evidence that the "cassette" of retinol bound to cellular retinol-binding protein serves as a physiological substrate. This work reports the cDNA cloning and expression of the 34-kDa polypeptide from rat liver, provides new evidence that it is a previously unknown SCAD, shows that it can catalyze the first step in RA synthesis with holoCRBP as substrate, and reveals that it is expressed tissue
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.