Abstract

Two protein subunits (42,000 and 78,000 daltons) encoded by the fadAB genes form a multifunctional enzyme complex containing thiolase, 3-hydroxyacyl-coenzyme A dehydrogenase, crotonase , epimerase, and isomerase activities (S. Pawar and H. Schulz, J. Biol. Chem. 256:3894-3899, 1981). In an attempt to characterize the structural organization and regulatory properties of these genes, a 5.2-kilobase pair fragment containing the fadAB genes has been isolated. Plasmids containing this fragment (i) complement mutations in the fadAB genes; (ii) overproduce by 10- to 50-fold thiolase, 3-hydroxyacyl-coenzyme A dehydrogenase and crotonase ; and (iii) specify a 42,000- and a 78,000-dalton protein. The fadA gene, which encodes the 42,000-dalton protein, has been localized within the original clone to a 3.3-kilobase pair fragment. Thiolase activity, which is encoded by the 42,000-dalton protein, was not observed in the absence of the 78,000-dalton protein, suggesting that an intact complex is required for function. Transposon Tn5 insertional mutagenesis of the cloned fadAB genes has demonstrated that both fadA and fadB are transcribed as a single transcriptional unit with the direction of transcription from fadA to fadB . The molecular cloning and characterization of the fadAB region confirm the original genetic contention that the genes encoding the proteins for the multifunctional complex form an operon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call