Abstract

Tuberculosis is a widespread and deadly infectious disease, with one third of the human population already being infected. Aminoglycoside antibiotics have become less effective in recent years owing to antibiotic resistance, which arises primarily through enzymatic modification of the antibiotics. The gene product Rv3168, a putative aminoglycoside phosphotransferase (APH), from Mycobacterium tuberculosis was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.2 M calcium acetate, 0.1 M Tris-HCl pH 7.0 and 20% PEG 3000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 1.67 Å on a synchrotron beamline. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 56.74, b = 62.37, c = 103.61 Å. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V(M)) is 2.91 Å(3) Da(-1). The structure was solved by the single-wavelength anomalous dispersion method and refinement of the selenomethionine structure is in progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.