Abstract

Anti TNF-α molecules have been used as therapeutic agents in a variety of human diseases such as Rheumatoid arthritis, Ankylosing spondylitis, Chron's diseases, Psoriasis, etc., where high levels of TNF-α plays a destructive role. The limitations of the present TNF-α inhibitors in terms of size, tissue penetration and immunogenicity, etc., provoked the search for small anti TNF-α molecules. In the present study, a single chain variable fragment (ScFv) construct was made from a monoclonal antibody of the class IgG raised against TNF-α was used. The anti TNF-α ScFv was well expressed as soluble form in Escherichia coli BL21 (DE3), which was purified to homogeneity by commercial methacrylate monolith-convective interaction media (CIM) supports using two different chemistries, immobilized metal affinity chromatography (IMAC) with copper ions followed by anion exchange chromatography. The anti TNF-α ScFv found to be inhibiting the TNF-α mediated cytotoxicity in MCF-7 cells with an IC(50) of 8μg. Data presented here are promising and encouraging to further optimize anti TNF-α ScFv production in larger scale with higher recovery at a cheaper price for therapeutic purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.