Abstract

The physiology and biochemistry of skeletal muscles in shrimps have been poorly understood compared with those from vertebrates. The present study was conducted focusing on myosin, the major protein in skeletal muscle, from adult specimens of black tiger Penaeus monodon and Pacific white Penaeus vannamei shrimps. Two genes encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle and defined as MHCa and MHCb according to our previous study on kuruma shrimp Marsupenaeus japonicus. Random cloning demonstrated that the MHCb gene (MHCb) was expressed more abundantly than MHCa. The full-length cDNA clones of MHCa and MHCb from black tiger shrimp consisted of 5,926 and 5,914 bp, respectively, which encoded 1,914 and 1,909 amino acids, respectively, whereas those from Pacific white shrimp consisted of 5,923 and 5,908 bp, respectively, which encoded 1,913 and 1,909 amino acids, respectively. Both MHCa and MHCb were considered to be fast muscle type due to their strict localization in fast muscle. The amino acid identities between MHCa and MHCb of black tiger shrimp were 77%, 60%, and 73% in the regions of subfragment-1 (S1), subfragment-2 (S2) and light meromyosin (LMM), respectively, with 71% in total, whereas those of Pacific white shrimp were 78%, 60%, and 73% in the regions of S1, S2, and LMM, respectively, with 72% in total. In situ hybridization and northern blot analysis using different regions from abdominal muscle demonstrated different localizations of MHCa and MHCb transcripts in this muscle, suggesting their distinct physiological functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.