Abstract

Peroxiredoxin (Prx, EC 1.11.1.15) is a family of the thiol-dependent antioxidant enzyme. In this study, a cold-adapted Prx gene from Antarctic psychrophilic bacterium Psychrobacter sp. ANT206 (PsPrx) consisted of an open reading frame (ORF) of 567 bp was cloned. Amino acid sequence analysis revealed that PsPrx contained one catalytic site (Thr45, Cys48 and Arg121) and could be categorized as a typical 2-Cys Prx. Compared with the mesophilic StPrx, PsPrx with a reduced amount of hydrogen bonds and salt bridges and other characteristics, may be responsible for its enzymatic stability and flexibility at low temperature. The recombinant PsPrx (rPsPrx) was purified to homogeneity by Ni-NTA and its enzymatic characterization was described. Interestingly, rPsPrx exhibited the maximum activity at 30 °C and remained 42.6% of its maximum activity at 0 °C. rPsPrx was a salt-tolerance enzyme that showed 42.2% of its maximum activity under 2.5 M NaCl. The kinetic parameters of different substrates revealed that it could efficiently catalyze the peroxides, especially H2O2 and t-BOOH (tert‑butyl hydroperoxide). Moreover, rPsPrx exhibited the ability to protect super-coiled DNA from oxidative damage. These results indicated that rPsPrx has special catalytic properties and may be a promising candidate for food and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.