Abstract

BackgroundThe white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme.ResultsWe report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM) compared to that of NADPH (39 μM). The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction.ConclusionsIn this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.

Highlights

  • The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can completely degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched [2]

  • Lignin degradation by P. chrysosporium is initiated by an array of extracellular oxidases and peroxidases, such as the multiple isoenzymes of lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) [3,4,5,6]

  • The Aaop substrates, like the physiologically-significant secondary metabolite 3,4-Dimethoxybenzyl (Veratryl) alcohol [11], can originate, firstly, through de novo biosynthesis [12] and secondly, through reduction of aromatic aldehydes released during lignin degradation in cyclic redox reactions involving aryl-alcohol dehydrogenase (Aadp) [13,14,15,16,17]

Read more

Summary

Results

We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction

Conclusions
Background
Results and discussion
Conclusion
Materials and methods
24. Frohman MA
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.