Abstract

In this study, we have cloned and characterized a cycloalkanone monooxygenase (CAMO) from the ascomycete Cylindrocarpon radicicola ATCC 11011 (identical to Cylindrocarpon destructans DSM 837). The primary structure of this Baeyer-Villiger monooxygenase (BMVO) revealed 531 residues with around 45% sequence identity to known cyclohexanone monooxygenases. The enzyme was functionally overexpressed in Escherichia coli and investigated with respect to substrate spectrum and kinetic parameters. Substrate specificity studies revealed that a large variety of cycloaliphatic and bicycloaliphatic ketones are converted by this CAMO. A high catalytic efficiency against cyclobutanone was observed and seems to be a particular property of this BVMO. The thus produced butyrolactone derivatives are valuable building blocks for the synthesis of a variety of natural products and bioactive compounds. Furthermore, the enzyme revealed activity against open-chain ketones such as cyclobutyl, cyclopentyl and cyclohexyl methyl ketone which have not been reported to be accepted by typical cyclohexanone monooxygenases. These results suggest that the BVMO from C. radicicola indeed might be rather unique and since no BVMOs originating from eukaryotic organisms have been produced recombinantly so far, this study provides the first example for such an enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.