Abstract

Lignin, a complex heteropolymer present in plant cell walls, is now recognized as a valuable renewable resource with potential applications in various industries. The lignin biorefinery concept, which aims to convert lignin into value-added products, has gained significant attention in recent years. β-etherases, enzymes that selectively cleave β-O-4 aryl ether bonds in lignin, have shown promise in lignin depolymerization. In this study, the β-etherase LigF from Altererythrobacter sp. B11 was cloned, expressed, purified, and biochemically characterized. The LigF-AB11 enzyme exhibited optimal activity at 32 °C and pH 8.5 when catalyzing the substrate PNP-AV. The enzyme displayed mesophilic behavior and demonstrated higher activity at moderate temperatures. Stability analysis revealed that LigF-AB11 was not thermostable, with a complete loss of activity at 60 °C within an hour. Moreover, LigF-AB11 exhibited excellent pH stability, retaining over 50 % of its activity after 1 h under pH conditions ranging from 3.0 to 11.0. Metal ions and surface impregnation agents were found to affect the enzyme's activity, highlighting the importance of considering these factors in enzymatic processes for lignin depolymerization. This study provides valuable insights into the biochemical properties of LigF-AB11 and contributes to the development of efficient enzymatic processes for lignin biorefineries. Further optimization and understanding of β-etherases will facilitate their practical application in the valorization of lignin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call