Abstract
Rat liver 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD, EC 1.1.1.50) is an NAD(P)(+)-dependent oxidoreductase which will terminate androgen action by converting 5 alpha-dihydrotestosterone to 3 alpha-androstanediol. It is identical to dihydrodiol dehydrogenase and it can function as a 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase. Its reactions are potently inhibited by the nonsteroidal anti-inflammatory drugs (NSAIDs). A cDNA (2.1 kilobases) for 3 alpha-HSD was cloned from a rat liver cDNA expression library in lambda gt11. Portions of the cDNA insert which contained an internal EcoRI site were subcloned into pGEM3, and dideoxysequencing revealed that the cDNA contains an open reading frame of 966 nucleotides which encode a protein of 322 amino acids with a monomer Mr of 37,029. The identity of this clone was confirmed by locating two tryptic peptides and two endoproteinase Lys-C peptides from purified 3 alpha-HSD within the nucleotide sequence. The amino acid sequence of rat liver 3 alpha-HSD bears no significant homology with 3 beta-, 17 beta- or 11 beta-hydroxysteroid dehydrogenases but has striking homology with bovine lung prostaglandin F synthase (69% homology at the amino acid level and 74% homology at the nucleotide level) which is a member of the aldehyde/aldose reductase family. This sequence homology supports previous correlates which suggest that in rat 3 alpha-HSD may represent an important target for NSAIDs. The nucleotide sequence also contains three peptides that have been identified by affinity labeling with either 3 alpha-bromoacetoxyandrosterone (substrate analog) or 11 alpha-bromoacetoxyprogesterone (glucocorticoid analog) to comprise the active site (see accompanying article (Penning, T. M., Abrams, W. R., and Pawlowski, J. E. (1991) J. Biol. Chem. 266, 8826-8834]. The sequence data presented suggests that 3 alpha-HSD, prostaglandin F synthase, and aldehyde/aldose reductases are members of a common gene family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.