Abstract

cDNA sequences for both human high molecular weight (HMW) and low molecular weight (LMW) prekininogens have been isolated by molecular cloning and determined by sequence analysis. The sequence determination together with the S1 nuclease mapping and RNA blot-hybridization analyses indicate that human HMW and LMW prekininogen mRNAs share an identical sequence throughout the 5'-untranslated region and the protein-coding region up to the sequence encoding the 12 amino acids distal to the bradykinin sequence, and the two mRNAs then completely diverge from each other. The signal peptide, the heavy chain (H chain), and the bradykinin moiety, which are common between the two prekininogens, consist of 18, 362, and 9 amino acids, respectively, while the light chains (L chains) of the HMW and LMW prekininogens are composed of 255 and 38 amino acids, respectively. All 17 cysteine residues present in the human and bovine H chains are located at exactly equivalent positions, indicating that the human H chain, like the bovine counterpart, can form 8 loop structures, each connected by two adjacent cysteine residues. The L chains of human and bovine kininogens differ in the protein lengths as well as in some amino acids crucial for the processing of the kininogens by kallikrein. Based upon this finding, we have discussed the molecular basis for the different modes of processing of human and bovine HMW kininogens and for the different kinetics of contact activation reactions exhibited by the two HMW kininogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.