Abstract

Rapamycin (Rm) and FK506 are macrolide antifungal agents that exhibit potent immunosuppressive properties in higher eukaryotes which are mediated through interaction with specific receptor proteins (FKBPs or RBps, for FK506- and Rm-binding proteins, respectively). These proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro which is inhibited by the binding of Rm and FK506. We previously isolated a gene encoding an RBP from Saccharomyces cerevisiae, and demonstrated that null mutations in this gene (called RBP1) result in a recessive Rm-resistant (Rm R) phentype. We now have cloned the Candida albicans RBP1 gene via complementation of the Rm R phenotype in S. cerevisiae. The predicted C. albicans RBP exhibits 61%, 52% and 49% amino acid (aa) sequence identity with RBPs (FKBPs) from S. cerevisiae, Neurospora crassa and human cells (FKBP-12), respectively. Furthermore, several of the aa residues identified as being important for drug binding in human FKBP-12 are conserved within the C. albicans RBP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call