Abstract

We have studied the DNAs of fastidious enteric adenoviruses recovered from the stools of infants with gastroenteritis. By endonuclease analysis, the strains examined represent candidate adenovirus types 40 and 41, which are thought to comprise new adenovirus subgroups F and G. Cloning of DNA from representative enteric adenovirus isolates, together with hybridization and subcleavage analysis, permitted the mapping of restriction enzyme cleavage sites. Although the restriction profiles are different for the two strains, they appear to have several cleavage sites in common. Cross hybridization studies show considerable homology between the subgroup F and G strains but much less homology to adenovirus 2. In addition, regions on both ends of enteric adenovirus genomes (map units, 2.9 to 11.3 and 75 to 100) possess little or no homology to adenovirus 2. Restriction enzyme digests reveal submolar fragments that map to the terminal regions of the genome. Electron micrographic studies of denatured and renatured DNA strands suggest that the submolar fragments may derive from cleavage of defective molecules. Inverted terminal repeat sequences were shown to comprise 0 to 3.2% of the length of complete (greater than or equal to 22 megadaltons) enteric adenovirus DNA molecules but 4 to 69% of incomplete-length (less than 22-megadalton) molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.