Abstract

The Transient Receptor Potential cation channel V1 (TRPV1) is expressed in peripheral nociceptive neurons and is subject to polymodal activation via various agents including capsaicin, noxious heat, low extracellular pH, and direct phosphorylation by protein kinase C (PKC). We have cloned and heterologously expressed mouse TRPV1 (mTRPV1) and characterized its function utilizing FLIPR-based calcium imaging to measure functional responses to various small molecule agonists, low pH and direct phosphorylation via PKC. The various TRPV1 agonists activated mTRPV1 with a rank order of agonist potency of (resiniferatoxin (RTX) = arvanil > capsaicin = olvanil > OLDA > PPAHV) (EC 50 values of 0.15 ± 0.04 nM, 0.27 ± 0.07 nM, 9.1 ± 1.2 nM, 3.7 ± 0.3 nM, 258 ± 105 nM, and 667 ± 151 nM, respectively). Additionally, mTRPV1 was activated by either low pH or with addition of the PKC activator phorbol 12-myristate 13-acetate (PMA). The TRPV1 antagonists iodinated-resiniferatoxin (I-RTX) or BCTC were both able to block capsaicin, pH and PKC-induced responses of mTRPV1 (IC 50 (I-RTX) = 0.35 ± 0.12 nM, 1.9 ± 0.7 nM, and 0.80 ± 0.68 nM, IC 50 (BCTC) = 1.3 ± 0.36 nM, 0.59 ± 0.16 nM, and 0.37 ± 0.15 nM, respectively). However, the antagonist capsazepine was only able to inhibit a capsaicin-evoked response of mTRPV1 with an IC 50 of 1426 ± 316 nM. Comparable results were achieved with rat TRPV1, while capsazepine blocked all modes of human TRPV1 activation. Thus, the mTRPV1 cation channel has a molecular pharmacological profile more akin to rat TRPV1 than either human or guinea pig TRPV1 and the molecular pharmacology suggests that capsazepine may be an ineffective TRPV1 antagonist for in vivo models of inflammatory pain in the mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call