Abstract

Invertase inhibitors (InvInh) interacted with invertases (Inv) and inhibited their activities involved in reducing sugars (RS) accumulation in cold-stored potato tubers. Understanding their potential contribution to RS accumulation is of both theoretical and practical importance because RS accumulation is a costly postharvest problem for both potato producers and processors. In this study, four genes with significant sequence homology to NtInvInhs were identified from potato and their possible contributions to cold-induced sweetening (CIS) of tubers were investigated together with StInv1, an acid invertase gene previously clarified corresponsive to CIS. Transcripts analysis of these StInvInhs and StInv1 among six potato genotypes with distinct CIS sensitivity indicated that StInvInh2 had a negative power regression to RS increase of the cold-stored tubers while a positive linear regression was obtained with StInv1. The relative expression ratio calculated by StInv1/StInvInh2 performed a very significant correlation to RS accumulation, suggesting a possible interaction between StInv1 and StInvInh2 in response to CIS. The bimolecular fluorescence complementation visualized the interaction between StInv1 and StInvInh2A and with StInvInh2B in both onion epidermal cells and tobacco BY-2 cells and demonstrated that these two inhibitors may be the isoforms of StInvInh2 as the counterparts of StInv1. The recombinant StInvInh2B protein inhibited the activities of soluble acid invertase indicating evidently its inhibitory properties. Our results strongly suggest that the interaction between StInv1 and StInvInh2 may play critical roles in controlling the CIS through posttranslational regulation of StInv1 by StInvInh2 in potato tubers and will provide novel tools and resources for improving CIS tolerance of potatoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call