Abstract
Kazal-type serine protease inhibitors play a role in physiological processes such as blood coagulation and fibrinolysis. The amino acid residues at the P1 site are different, and they inhibit different types of proteases. The inhibitory mechanism of the protease in the salivary glands of Poecilobdella manillensis is still unclear. Based on cloning, prokaryotic expression and bioinformatics analysis, we studied the role of Kazal-type serine protease inhibitors in P. manillensis and analyzed their expression by quantitative real-time PCR. The results suggested that the recombinant protein was successfully expressed in the supernatant when a prokaryotic expression vector was constructed and induced with 0.2 mmol/L IPTG at 37°C for 4h, and the enzymatic activity was determined. The mature protein encodes 91 amino acids and has a relative molecular weight of 9929.32 Da, and after removing the signal peptide, the theoretical isoelectric point was 8.79. It is an unstable protein without a transmembrane domain. The mature protein contains two Kazal-type domains, in which all P1 residues are Lys, consisting of an α helix and three antiparallel β sheets. The upregulated expression of the mRNA was induced after a meal was provided, and the results showed an increasing and then decreasing trend. Taken together, the results indicate that mature proteins from P. manillensis inhibit thrombin activity, laying the foundation for the subsequent in-depth study of the function of genes encoding Kazal-type serine protease inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.