Abstract

Saccharomyces cerevisiae can obtain xylose utilization capacity via integration of heterogeneous xylose reductase (XR) and xylitol dehydrogenase (XDH) genes into its metabolic pathway, and XYL2 which encodes the XDH plays an essential role in this process. Herein, we reported that two hypothetical XYL2 genes from the multistress-tolerant yeasts of Issatchenkiaorientalis and Torulaspora delbrueckii were cloned, and they encoded two XDHs, IoXyl2p and TdXyl2p, respectively, with the activities for oxidation of xylitol to xylulose. Comparative studies demonstrated that IoXyl2p and TdXyl2p, like the SsXyl2p from Scheffersomyces stipitis, were probably localized to the cytoplasm and strictly dependent on NAD+ rather than NADP+ as the cofactor for catalyzing the oxidation reaction of xylitol. IoXyl2p had the highest specific activity, maximum velocity (Vmax), affinity to xylitol (Km), and catalytic efficiency (kcat/Km) among the three XDHs. The optimum temperature for oxidation of xylitol were at 45°C by IoXyl2p and at 35°C by TdXyl2p and SsXyl2p, and the optimum pH of IoXyl2p, TdXyl2p and SsXyl2p for oxidation of xylitol was 8.0, 8.5 and 7.5, respectively. Mg2+ promoted the activities of IoXyl2p and TdXyl2p, but slightly inhibited the activity of SsXyl2p. Most metal ions had much weaker inhibition effects on IoXyl2p and TdXyl2p than SsXyl2p. IoXyl2p displayed the strongest salt resistance among the three XDHs. To summarize, IoXyl2p from I.orientalis and TdXyl2p from T.delbrueckii characterized in this study are considered to be the attractive candidates for the construction of genetically engineered S.cerevisiae for efficiently fermentation of carbohydrate in lignocellulosic hydrolysate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.