Abstract

As multifunctional proteins, prohibitins(PHBs) participate in many cellular processes and play essential roles in organisms. In this study, using rapid amplification of cDNA end (RACE) technology, EuPHB1 was cloned from Eucommia ulmoides Oliver (E. ulmoides). A subcellular localization assay preliminarily located EuPHB1 in mitochondria. Then EuPHB1 was transformed into tobacco, and phenotype analyses showed that overexpression of EuPHB1 caused leaves to become chlorotic and shrivel. Furthermore, genes related to hormone and auxin signal transduction, auxin binding, and transport, such as ethylene-responsive transcription factor CRF4-like and ABC transporter B family member 11-like, were significantly inhibited in response to EuPHB1 overexpression. Its overexpression disturbs the original signal transduction pathway, thus causing the corresponding phenotypic changes in transgenic tobacco. Indeed, such overexpression caused fading of palisade tissue and an increase in the number of certain mesophyll cells. It also increased adenosine triphosphate (ATP) synthase activity, mitochondrial membrane potential, ATP content, and reactive oxygen species (ROS) levels in cells. Our results suggest that EuPHB1 expression promotes cellular energy metabolism by accelerating the oxidative phosphorylation of the mitochondrial respiratory chain. Elevated levels of EuPHB1 in the mitochondria, which helps supply the extra energy required to support rapid rates of cell division.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.