Abstract

In insects, the perception and discrimination of odorants requires the involvement of odorant-binding proteins (OBPs). To gain a better molecular understanding of olfaction in the agronomic pest Lygus lineolaris (the tarnished plant bug), we used a transcriptomics-based approach to identify potential OBPs. In total, 33 putative OBP transcripts, including the previously reported Lygus antennal protein (LAP), were identified based on the characteristic OBP Cys signature and/or sequence similarity with annotated orthologous sequences. The L. lineolaris OBP (LylinOBP) repertoire consists of 20 'classic' OBPs, defined by the spacing of six conserved Cys residues, and 12 'Plus-C' OBPs, defined by the spacing of eight conserved Cys and one conserved Pro residue. Alternative splicing of OBP genes appears to contribute significantly to the multiplicity of LylinOBP sequences. Microarray-based analysis of chemosensory tissues (antennae, legs and proboscis) revealed enrichment of 21 LylinOBP transcripts in antennae, 12 in legs, and 15 in proboscis, suggesting potential roles in olfaction and gustation respectively. PCR-based determination of transcript abundance for a subset of the LylinOBP genes across multiple adult tissues yielded results consistent with the hybridization data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.