Abstract

A grass rhizosphere bacterium, Enterobacter intermedium (60-2G), has a strong ability to solubilize insoluble phosphate. Certain phosphate-solubilizing bacteria secrete gluconic acid for this process. The gluconic acid is produced by direct extracellular oxidation of glucose by a glucose dehydrogenase equipped with pyrroloquinoline quinone (PQQ) as a cofactor. A pqq gene cluster producing PQQ was detected in E. intermedium and this sequence conferred phosphate-solubilizing activity to Escherichia coli DH5alpha. The 6,783-bp pqq sequence had six open reading frames (pqqA, B, C, D, E, and F) and showed 50-95% homology to pqq genes of other bacteria. E. coli DH5alpha expressing the E. intermedium pqq genes solubilized phosphate from hydroxyapatite after a pH drop to pH 4.0, which paralleled in time the secretion of gluconic acid. We speculate that production of PQQ in E. coli DH5alpha expressing the pqq cluster activates an endogenous glucose dehydrogenase to permit gluconic acid secretion that solubilizes the insoluble phosphate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call