Abstract

The polymerase chain reaction was used to amplify protein tyrosine phosphatase (PTPase)-related cDNA from a template of total RNA isolated from human skeletal muscle. A novel PTPase, which we term PTP-PEST, was detected by this method. The polymerase chain reaction fragment was used to screen two different HeLa cell libraries to obtain full length cDNA clones. The cDNA predicts a protein of 510 amino acids, approximately 60 kDa, that does not contain an obvious signal sequence or transmembrane segment suggesting it is a nonreceptor type enzyme. The PTPase domain is located in the N-terminal portion of the molecule and displays approximately 35% identity to other members of this family of enzymes. The C-terminal segment is rich in Pro, Glu, Asp, Ser, and Thr residues, possessing features of PEST motifs which have previously been identified in proteins with very short intracellular half-lives. The protein was expressed in Escherichia coli as a fusion product with glutathione S-transferase. Intrinsic activity was demonstrated in vitro against a variety of phosphotyrosine-containing substrates including BIRK, the autophosphorylated cytoplasmic kinase domain of the insulin receptor beta subunit. It did not dephosphorylate phosphoseryl-phosphorylase a. PTP-PEST mRNA is broadly distributed in a variety of cell lines. Stimulation of human rhabdomyosarcoma A204 cells, a transformed muscle line, with insulin led to an approximately 4-fold induction of PTP-PEST mRNA within 36 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.