Abstract

Basal transcription by human RNA polymerase II requires the coordinate action of several ancillary factors (TFIIA-J) and can be regulated by various promoter-specific DNA binding proteins. An additional class of factors, called coactivators, are dispensable for basal transcription but are indispensable for regulation by transcriptional activators. Biochemical studies established that some coactivators are associated with the TATA-binding protein (TBP) to form the TFIID complex. We therefore set out to define the relationship between TBP and these TBP-associated factors (TAFs). Here we describe the cloning, expression and properties of the first human TAF, hTAFII250. The hTAFII250 gene is identical to a gene, CCG1, (ref 7,8), implicated in cell-cycle progression. Recombinant hTAFII250 binds directly to TBP both in vitro and in yeast, and participates in the formation of the TFIID complex. This largest TAF may therefore play a central role in TFIID assembly by interacting with both TBP and other TAFs, as well as serving to link the control of transcription to the cell cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.