Abstract

The methylotrophic yeast Pichia pastoris is increasingly used for heterologous expression of high quality proteins in laboratory-scale (milligram) quantities. Commercially available polysaccharide-active enzyme preparations have limited applications in plant cell wall research due to their heterogeneous mix of hydrolytic activities. P. pastoris provides an ideal in vitro expression system for producing monocomponent enzymes, since it lacks endogenous plant cell wall-active enzymes and can perform eukaryotic post-translational modifications (i.e., glycosylation). We have routinely prepared cDNA constructs from Aspergillus nidulans encoding a broad array of hydrolases active on various linkages contained in plant cell wall polysaccharides. The cDNAs were inserted into the pPICZα C shuttle vector (Invitrogen) in-frame with the Saccharomyces cerevisiae α-secretion factor and expressed under the transcriptional control of the highly inducible alcohol oxidase 1 (AOX1) promoter. The enzyme products were efficiently secreted into buffered complex methanol medium (BMMY) as C-terminal his-tagged proteins for simple one-step affinity purification. The insertion of the c-Myc epitope enabled easy immunodetection. Here we present the detailed protocols for primer design, cloning, expression, and activity assays for a representative set of xylan-acting hemicellulases produced in P. pastoris.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.