Abstract

Based on bioinformatic data on model fungi, the rodA and wetA genes encoding, respectively, a RodA hydrophobin protein and the WetA protein involved in conidiation mechanisms, were PCR-cloned and characterized for the first time in Penicillium camemberti. These results, completed by a sequence of the brlA gene (available in GenBank), which encodes a major transcriptional regulator also involved in the conidiation mechanism, were used to compare, by qRT-PCR, the expression of the three genes in liquid and solid cultures in a synthetic medium. While expression of the brlA and wetA genes increased dramatically in both culture conditions after 4 days of growth, expression of the rodA gene increased only with conidiation and in the solid culture, and this expression was correlated with production and secretion of a RodA protein outside the hyphae, which became very hydrophobic. In liquid cultures, no production of RodA occurred in mycelia, which remained hydrophilic, and no conidiation was detected despite formation of swellings at the tips of hyphae. The absence of conidiation in liquid culture correlated with the lack of rodA gene expression, which could be regulated by the medium composition independently of brlA and wetA genes expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.