Abstract

Several fish species are known to possess mechanisms that allow them to adapt to environments with different salinities. The aim of this study was to investigate the effects of salinity on the expression of aquaporins (aqp1a, aqp3a, aqp8a, and aqp9a) in the gills and intestines of Chinese black sleeper. After 30days of acclimation, the expression of aqp1a, aqp3a, and aqp9a in the gills was significantly higher in fish transferred to 5 ppt than in those transferred to 40 ppt seawater, whereas aqp8 expression was lower. In contrast, aqp1a, aqp3a, and aqp8a expression in the intestines was higher in fish acclimated in 40 ppt than in those acclimated in 5 ppt. During abrupt salinity acclimation, the levels of aqp1a and aqp9a in the gills varied over time in fish acclimated in 5 ppt, but not in 40 ppt. The aqp3a levels in gills were higher in the 5 ppt group after 24h than in the 40 ppt. The expression level of aqp8a in gills was higher in 40 ppt than in 5 ppt, except for that at 12h. In the intestines, expression level of aqp1a and aqp8a were significantly upregulated from 12 to 48h following acclimation in 40 ppt and aqp3a was higher in 40 ppt group than in 5 ppt, while aqp9a expression exhibited an opposite trend. These findings suggest that aqp1a, aqp3a, aqp8a and aqp9a may play a major osmoregulatory role in water transport in the gills and intestines during acclimation to different salinity environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.